Exercise 7.2.6

In the first-order differential equation $d y / d x=f(x, y)$, the function $f(x, y)$ is a function of the ratio y / x :

$$
\frac{d y}{d x}=g(y / x) .
$$

Show that the substitution of $u=y / x$ leads to a separable equation in u and x.

Solution

Make the change of variables,

$$
u=\frac{y}{x} .
$$

Then $y=x u$, and the ODE becomes

$$
\begin{equation*}
\frac{d y}{d x}=g(u) \tag{1}
\end{equation*}
$$

Use the product rule to evaluate $d y / d x$:

$$
\frac{d y}{d x}=u+x \frac{d u}{d x} .
$$

Substitute this into equation (1).

$$
u+x \frac{d u}{d x}=g(u)
$$

Bring u to the right side

$$
x \frac{d u}{d x}=g(u)-u
$$

and divide both sides by x.

$$
\begin{aligned}
\frac{d u}{d x} & =\frac{g(u)-u}{x} \\
& =\left(\frac{1}{x}\right)[g(u)-u]
\end{aligned}
$$

Because $d u / d x$ is the product of a function of x and a function of u, this is a separable ODE.

